Copyright © Had2Know 2010-2024. All Rights Reserved.
Terms of Use | Privacy Policy | Contact
Site Design by E. Emerson
Omega Function Calculator ω(n)
In number theory, the number of distinct prime factors of an integer n is denoted by ω(n). For example, ω(6) = ω(12) = ω(18) = ω(24) = 2 since each of these numbers is the product of powers of 2 and 3.
Unlike other number theoretic functions, ω(n) is not multiplicative, however, it does satisfy the relation
ω(mn) = ω(m) + ω(n)
for relatively prime integers m and n. This is similar to the logarithm identity log(ab) = log(a) + log(b). The function 2ω(n) however is multiplicative:
2ω(mn) = 2ω(m)+ω(n) = (2ω(m))(2ω(n)).
The omega function plays a role in several number theoretic identities.
Identities
For any positive integers n and x, ω(nx) = ω(n).The number of square-free divisors of n is 2ω(n). To see why this is so, let P be the largest square-free divisor of n. P is simply the product of all the primes that divide n. Put another way, if you factor n into the products of its prime powers, P is the number you get when you replace every exponent with 1. Using the formula for σ₀(P), the number of divisors of P is 2ω(n). And the divisors of P are precisely the square-free divisors of n.
An infinite sum identity involving ω(n) is
Σ 2ω(n)/ns = ζ(s)²/ζ(2s),
where the n ranges from 1 to infinity and ζ(s) is the Riemann Zeta function given by
Σ 1/ns = ζ(s)
Let the multiplicative function G(n) be defined by expression
G(n) = Σ 2ω(d)
where d ranges over the divisors of n. If n = p1a1⋅p2a2⋅...⋅pkak, where the pi's are the prime factors and the ai's are their respective powers, then
G(n) = Π (2ai + 1)
where i ranges from 1 to k. (Necessarily, k = ω(n)).
Some Special Values of ω(n)
For any power of 10, ω(10x) = 2 since 10 = 2 times 5. For factorials, ω(n!) simply equals the number of primes less than or equal to n. Example: ω(20!) = 8 since there are exactly 8 primes that do not exceed 20: 2, 3, 5, 7, 11, 13, 17, and 19.The table below gives ω(n) for n = 1, 11, 111, etc.
n | Number of 1's | ω(n) |
1 | 1 | 0 |
11 | 2 | 1 |
111 | 3 | 2 |
1111 | 4 | 2 |
11111 | 5 | 2 |
111111 | 6 | 5 |
1111111 | 7 | 2 |
11111111 | 8 | 4 |
111111111 | 9 | 3 |
1111111111 | 10 | 4 |
11111111111 | 11 | 2 |
111111111111 | 12 | 7 |
1111111111111 | 13 | 3 |
11111111111111 | 14 | 4 |
111111111111111 | 15 | 6 |
1111111111111111 | 16 | 6 |
11111111111111111 | 17 | 2 |
111111111111111111 | 18 | 8 |
1111111111111111111 | 19 | 1 |
11111111111111111111 | 20 | 7 |
111111111111111111111 | 21 | 7 |
1111111111111111111111 | 22 | 6 |
11111111111111111111111 | 23 | 1 |
111111111111111111111111 | 24 | 10 |
1111111111111111111111111 | 25 | 5 |
11111111111111111111111111 | 26 | 6 |
111111111111111111111111111 | 27 | 5 |
1111111111111111111111111111 | 28 | 8 |
11111111111111111111111111111 | 29 | 5 |
111111111111111111111111111111 | 30 | 13 |
1111111111111111111111111111111 | 31 | 3 |
11111111111111111111111111111111 | 32 | 11 |
111111111111111111111111111111111 | 33 | 6 |
1111111111111111111111111111111111 | 34 | 6 |
11111111111111111111111111111111111 | 35 | 7 |
© Had2Know 2010